Whether validate_password compares passwords to the user name part of the effective user account for the current session and rejects them if they match. This variable is unavailable unless validate_password is installed.
Checking occurs in all contexts for which validate_password is invoked, which includes use of statements such as ALTER USER or SET PASSWORD to change the current user's password, and invocation of functions such as PASSWORD() and VALIDATE_PASSWORD_STRENGTH().
PDF Password Cracker Enterprise 3.2
The user names used for comparison are taken from the values of the USER() and CURRENT_USER() functions for the current session. An implication is that a user who has sufficient privileges to set another user's password can set the password to that user's name, and cannot set that user's password to the name of the user executing the statement. For example, 'root'@'localhost' can set the password for 'jeffrey'@'localhost' to 'jeffrey', but cannot set the password to 'root.
For the dictionary file to be used during password checking, the password policy must be set to 2 (STRONG); see the description of the validate_password_policy system variable. Assuming that is true, each substring of the password of length 4 up to 100 is compared to the words in the dictionary file. Any match causes the password to be rejected. Comparisons are not case-sensitive.
For VALIDATE_PASSWORD_STRENGTH(), the password is checked against all policies, including STRONG, so the strength assessment includes the dictionary check regardless of the validate_password_policy value.
The minimum number of lowercase and uppercase characters that validate_password requires passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless validate_password is installed.
The minimum number of numeric (digit) characters that validate_password requires passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless validate_password is installed.
validate_password_policy affects how validate_password uses its other policy-setting system variables, except for checking passwords against user names, which is controlled independently by validate_password_check_user_name.
The validate_password_policy value can be specified using numeric values 0, 1, 2, or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes the tests performed for each policy. For the length test, the required length is the value of the validate_password_length system variable. Similarly, the required values for the other tests are given by other validate_password_xxx variables.
The minimum number of nonalphanumeric characters that validate_password requires passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless validate_password is installed.
Verifiers SHOULD offer guidance to the subscriber, such as a password-strength meter [Meters], to assist the user in choosing a strong memorized secret. This is particularly important following the rejection of a memorized secret on the above list as it discourages trivial modification of listed (and likely very weak) memorized secrets [Blacklists].
Verifiers SHALL store memorized secrets in a form that is resistant to offline attacks. Memorized secrets SHALL be salted and hashed using a suitable one-way key derivation function. Key derivation functions take a password, a salt, and a cost factor as inputs then generate a password hash. Their purpose is to make each password guessing trial by an attacker who has obtained a password hash file expensive and therefore the cost of a guessing attack high or prohibitive. Examples of suitable key derivation functions include Password-based Key Derivation Function 2 (PBKDF2) [SP 800-132] and Balloon [BALLOON]. A memory-hard function SHOULD be used because it increases the cost of an attack. The key derivation function SHALL use an approved one-way function such as Keyed Hash Message Authentication Code (HMAC) [FIPS 198-1], any approved hash function in SP 800-107, Secure Hash Algorithm 3 (SHA-3) [FIPS 202], CMAC [SP 800-38B] or Keccak Message Authentication Code (KMAC), Customizable SHAKE (cSHAKE), or ParallelHash [SP 800-185]. The chosen output length of the key derivation function SHOULD be the same as the length of the underlying one-way function output.
For PBKDF2, the cost factor is an iteration count: the more times the PBKDF2 function is iterated, the longer it takes to compute the password hash. Therefore, the iteration count SHOULD be as large as verification server performance will allow, typically at least 10,000 iterations.
Something you know may be disclosed to an attacker. The attacker might guess a memorized secret. Where the authenticator is a shared secret, the attacker could gain access to the CSP or verifier and obtain the secret value or perform a dictionary attack on a hash of that value. An attacker may observe the entry of a PIN or passcode, find a written record or journal entry of a PIN or passcode, or may install malicious software (e.g., a keyboard logger) to capture the secret. Additionally, an attacker may determine the secret through offline attacks on a password database maintained by the verifier.
Despite widespread frustration with the use of passwords from both a usability and security standpoint, they remain a very widely used form of authentication [Persistence]. Humans, however, have only a limited ability to memorize complex, arbitrary secrets, so they often choose passwords that can be easily guessed. To address the resultant security concerns, online services have introduced rules in an effort to increase the complexity of these memorized secrets. The most notable form of these is composition rules, which require the user to choose passwords constructed using a mix of character types, such as at least one digit, uppercase letter, and symbol. However, analyses of breached password databases reveal that the benefit of such rules is not nearly as significant as initially thought [Policies], although the impact on usability and memorability is severe.
Complexity of user-chosen passwords has often been characterized using the information theory concept of entropy [Shannon]. While entropy can be readily calculated for data having deterministic distribution functions, estimating the entropy for user-chosen passwords is difficult and past efforts to do so have not been particularly accurate. For this reason, a different and somewhat simpler approach, based primarily on password length, is presented herein.
Many attacks associated with the use of passwords are not affected by password complexity and length. Keystroke logging, phishing, and social engineering attacks are equally effective on lengthy, complex passwords as simple ones. These attacks are outside the scope of this Appendix.
Password length has been found to be a primary factor in characterizing password strength [Strength] [Composition]. Passwords that are too short yield to brute force attacks as well as to dictionary attacks using words and commonly chosen passwords.
The minimum password length that should be required depends to a large extent on the threat model being addressed. Online attacks where the attacker attempts to log in by guessing the password can be mitigated by limiting the rate of login attempts permitted. In order to prevent an attacker (or a persistent claimant with poor typing skills) from easily inflicting a denial-of-service attack on the subscriber by making many incorrect guesses, passwords need to be complex enough that rate limiting does not occur after a modest number of erroneous attempts, but does occur before there is a significant chance of a successful guess.
Users should be encouraged to make their passwords as lengthy as they want, within reason. Since the size of a hashed password is independent of its length, there is no reason not to permit the use of lengthy passwords (or pass phrases) if the user wishes. Extremely long passwords (perhaps megabytes in length) could conceivably require excessive processing time to hash, so it is reasonable to have some limit.
Users also express frustration when attempts to create complex passwords are rejected by online services. Many services reject passwords with spaces and various special characters. In some cases, the special characters that are not accepted might be an effort to avoid attacks like SQL injection that depend on those characters. But a properly hashed password would not be sent intact to a database in any case, so such precautions are unnecessary. Users should also be able to include space characters to allow the use of phrases. Spaces themselves, however, add little to the complexity of passwords and may introduce usability issues (e.g., the undetected use of two spaces rather than one), so it may be beneficial to remove repeated spaces in typed passwords prior to verification.
The configuration file contains the default settings for the tool. You can use a text editor to change the behavior of the tool such as adding a server IP address, username, and password. The settings that you add or update in the configuration file are automatically loaded each time you start the tool.
Connects to a server, establishes a secure session, and discovers data from iLO. If you are logging in to a local server, run the command without arguments. If you are not logging in to a local server, supply the URL argument along with the user and password options.
Login remotely with basic authentication as part of other commands by including the --url, (-u, --user), and (-p, --password) flags.Optionally include the --https flag to validate the SSL certificate when logging in.Locally you will be logged in automatically unless running in higher security modes (see Higher Security Modes).
This command simultaneously logs in to the server at the provided URL with the provided username and password, and list all the available types that you can select. The full list has been truncated here for space. 2ff7e9595c
Kommentare